Abstract

The objectives of this research are: (1) to determine information processing capacity of an operator in a main control room and (2) to describe the relationship between the information processing capacity and human factors. This research centers on the relationship, as experimentally determined, between an operator’s mental workload and information flow during accident diagnosis tasks at nuclear power plants. Based on this relationship, the operator’s information processing capacity is established. In this paper, the information processing capacity is defined as the operator’s ability to manage the amount of bits in a second when diagnosing tasks or accidents. If the operator’s performance decreases rapidly as the information flow rate (bit/s) increases, it is possible to determine the operator’s information processing capacity. The cognitive information of a diagnosis task can be quantified using an information flow model and the operator’s mental workload is measured by subjective and physiological measures. NASA-TLX (Task Load indeX) is selected as the subjective method and an eye tracking system is used as the physiological measure for the workload. In addition, the information processing capacity related to human factors is investigated. Once the information processing capacity of operators is known, then it will be possible to apply it to predict the operators’ performance, design diagnosis tasks, and design human–machine interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call