Abstract

An air-conditioner (AC) that uses refrigerant R32 assisted with one-phase vapor injection shows high energy efficiency and low discharge temperature in the heat-pump cycle, but the performance is not satisfactory in the refrigeration cycle. In this study, an improved injection cycle consisting of one-phase vapor injection mode and two-phase injection mode is proposed and integrated into an AC using R32, which is now referred to as an advanced injection-assisted air-conditioner (IAC). Through an experimental and theoretical study, an optimal injection duration of 8s is attained for maximizing the refrigeration potential of the IAC. Furthermore, in an entire day–night cycle, both the cooling capacity and energy efficiency ratio (EER) of the IAC within the two-phase injection cycle are enhanced by 25% and 32%, respectively, compared with those of a noninjection-assisted AC. Moreover, two-phase injection offers the highest exergetic efficiency, approximately 50% or more in the refrigeration cycle, exhibiting remarkable thermodynamic performance of the IAC. In addition, compared to the conventional AC using R410A, the IAC using R32 within a two-phase injection cycle demonstrates reasonable payback performance and substantial reduction in carbon dioxide and sulfur dioxide emissions in the refrigeration cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call