Abstract
Increasing the cross-sectional area of the piles or adding wings to the piles are two strategies for increasing the bearing capacity of the piles to resist lateral stresses. Small and full-scale finite element models were used to investigate the effect of adding the wings on the laterally loaded pile bearing capacity in this study. Four embedded ratios (4, 6, 8, and 10) were used with various wing dimensions and numbers. The results showed that adding wings to the pile increases the resistance to lateral loads and reduces the lateral displacement significantly. +To achieve the highest lateral resistance, the wings should be fixed parallel to the lateral load applied to the pile and close to the pile head. The ultimate lateral applied load is proportional to the rise in relative density. The lateral pile capacity was increased by 16.5%, 18.4%, and 33% in dense, medium, and loose sand, respectively, at the same length to diameter ratio (L/D). Increasing wing length improves lateral capacity significantly. At a failure, the lateral pile capacity was 18% and 8.5 % for Lw, equal to 112 mm and 56 mm, respectively. Another study's purpose was to determine how increasing the number of wings affected pile resistance. The lateral pile capacity at failure was increased by 9.8 % for two wings, 18.4 % for three wings, and 18 % for four wings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.