Abstract

Heat transfer improvement in a water wall tube with fins was investigated in a circulating fluidized bed (CFB) boiler. Experiments were first conducted in a 6 MWth CFB boiler then a model was developed to analyse and interpolate the results. Temperatures at some discrete points within the wall cross-section of the tube were measured by burying 0.8 mm thermocouples within a tube. Experimental data showed an increase in heat absorption up to 45 per cent. A good agreement between measured and predicted values was noted. The distribution of temperature in the metal wall and of heat flux around the outer wall of a tube with longitudinal and lateral fins was analysed by numerical solution of a two-dimensional heat conduction equation. Effects of bed-to-wall heat transfer coefficient, water-to-tube inside heat transfer coefficient, bed temperature, water temperature and thermal conductivity of the tube material on the heat flux around the water tube are discussed. The present work also examines the influence of the length of the longitudinal fin and the water tube thickness. Heat flux was highest at the tip of the longitudinal fin. It dropped, but increased again near the root of the lateral fin. Copyright © 2000 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.