Abstract

Experimental investigations and detailed kinetic simulations of the formation of soot particles during pyrolysis of mixtures of acetylene with acetone and propane behind reflected shock waves are performed. Acetone and propane additives are found to substantially promote the process of soot formation as compared with that in acetylene–argon mixtures. Detailed kinetic simulations closely reproduce our own experimental results and published data. The kinetic model of soot formation is comprised of 4782 direct and reverse reactions involving 372 species. The predictive possibility of the kinetic model of soot formation is tested by describing the effect of acetone and propane additives to acetylene–argon mixtures on soot formation. All the kinetic parameters of the unified kinetic model are kept constant. The indicated additives enhance the soot yield because polyyne-dominated pathway of soot nucleation, characteristic of unseeded acetylene–argon mixtures, is augmented by the aromatic pathway, typical of most hydrocarbons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call