Abstract

Helical piles became a popular foundation technique, and as a result of environmental restrictions, they have become increasingly widely used. However, due to the high cost of experimentation, the influence of the number of helices and their positions on the pile-bearing capacity has not been sufficiently studied. The present study performed compression and lateral load tests on helical piles of the same diameter but with one, two, and three round helices in known sandy soil. The results from the experiments are compared with those from numerical simulations that use the mesh-free RBF method and the Winkler-Fuss approach to model how the pile and ground interact. The results are generalized to suggest an engineering equation that can predict the best pile configuration in sandy soil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.