Abstract

Abstract The main purpose of the present study is to investigate the melting characteristics of a PCM cylindrical thermal storage system using experimental and numerical approaches. Three inclination positions are considered from vertical to horizontal. Paraffin wax has been used as the phase change material with a melting temperature ranged between 35 and 37 oC. The melting behaviour of the PCM inside the storage is characterised using different parameters of temperature distribution, imaging of PCM melting profiles, rate of stored heat, and liquid PCM flow within the storage. The results show that the PCM storage inclination angle has a significant effect on the PCM temperature distribution, PCM melting time and profile. It is noted that PCM in the storage in the 45° inclination angle from the horizontal location has the fastest melting rate is the fastest in melting compared to the 0° and 90° inclination angles. The simulation models enable understanding the internal flow of liquid PCM where it has been found that the direction of buoyant force resulting from the melted liquid PCM has a major role in both melting rate and melting direction within the PCM storage. In addition, it has been observed that the charging rate has no effect on the PCM melting profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.