Abstract

AbstractIn this work experimental and numerical result of high speed orthogonal machining of Ti-6AL-4V titanium alloy is presented. High speed orthogonal turning is carried in a lathe using uncoated carbide inserts under dry cutting conditions. Experimental study is carried out by focusing on the measurement of cutting force and cutting temperature. The experimentation is supplemented by simulations from 2D finite element model (FEM) using Third Wave AdvantEdge software. The measured cutting forces and temperature are compared with FEA results. The major factors affecting the machinability of titanium alloy such as spindle speed, feed and cutting tool rake angles are investigated. Numerical results agree with the experimental results at higher speeds and feed levels. These results can be used for further study in high speed turning of titanium alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call