Abstract
Two-point incremental sheet forming process (TPIF) is an emerging and promising manufacturing process for the production of complex geometries or customized functional sheet components. In this study, the single-pass TPIF process is investigated using experimental and numerical approaches to study the forming force evolution, fracture behavior and strain states with a varied wall angle hemisphere shape. It can be concluded that both the peak force and fracture depth increases with tool diameter and incremental depth in TPIF process. It seems the deformation mechanism or the failure mechanism is strongly dependent on particular forming conditions based on a failure parts morphology observation. FEM simulation results indicated that the major plastic strain is positive while the minor plastic strain is negative in the TPIF process on a hemiphere shape. it can be concluded that the strain increment and total equivalent plastic strain is affected by both tool diameter and incremental depth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.