Abstract
Abstract Coaxial extrusion is a commonly used process to manufacture tubular structures to mimic vascular systems in 3D bioprinting. In this study, the stability of coaxial extrusion of a non-Newtonian material, Pluronic F127, is investigated. The extrusion process is considered stable when the extrudate form a core-annular structure. When it is unstable, dripping or jetting of the inner fluid is observed. In this study, the effects of the viscosity ratio, flowrate ratio, and the non-Newtonian behaviors on the stability of the coaxial extrusion process are investigated experimentally and numerically. The results show that all three factors can affect the stability of the process. When the ratio of viscosities increases, the process becomes unstable. The extrusion process tends to be stable when the flowrate of the outer fluid is much higher than that of the inner fluid. When the overall flowrate decreases, due to the non-Newtonian fluid behavior, the extrusion process can become unstable. This study shows the interconnected relationship between viscosity, flowrate, and non-Newtonian fluid behaviors and their effects on the stability of the coaxial extrusion process. The non-Newtonian flow behavior needs to be considered when studying or using coaxial extrusion. This study also provides a guiding principle on how to alter extrusion parameters in order to achieve the desired flow pattern.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.