Abstract
Investigation on twist springback is important to improve the accuracy of forming parts. In this paper, a double C rail made of transformation induced plasticity 780 (TRIP 780) steel is designed, and the stamping and twist springback are simulated with ABAQUS based on three different hardening models (including Ziegler, Johnson-Cook and combined hardening models). A new index for calculating the twist springback is proposed, which is based on the angle between two end section lines of the double C rail. The experimental results of twist springback are compared with the calculation results from three different hardening models. The calculation results based on combined hardening model are the closest to the experiment data. In order to compensate twist springback, a curved surface die is designed based on the geometric shape of the double C rail after twist springback. The stamping and twist springback are simulated based on the curved surface die and combined hardening model, and the twist springback is decreased obviously after compensation, which shows that the compensation of twist springback is effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Precision Engineering and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.