Abstract
AbstractIn this work, the impact of wave regime and operational parameters on the photocatalytic degradation of methylene blue was investigated on a thin film coated ultra-violet spinning disc. In the employed experimental setup, the wave regimes of spiral, unstructured and crisscross waves as well as smooth film could be observed at disc rotational speeds of 50–200rpm and flow rates of 5–20mL/s with a calculated average thickness of 160–450μm. The glass discs were coated with anatase TiO2 by a sol–gel procedure followed by heat treatment at 500° C for 1h. The reactor was irradiated by a low pressure mercury UV lamp producing an irradiance of 12–23W/m2 on the disc surface. The reactant was saturated with oxygen and the effect of spinning speed, flow rate and the resulting wave regime on the degradation rate and kinetics of methylene blue and its reaction intermediates determined. Reactions followed pseudo-second-order kinetics, suggesting dimerisation and/or mass transfer limitations given that the two reactions with the highest conversion observed at 15mL/s and 100 and 200rpm, were pseudo-first-order. The spinning disc reactor was, however, not photon transfer limited. The wave regimes showed no impact on the reaction rate, since the flow was mainly laminar with no interfacial mass transfer of oxidant required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.