Abstract

Abstract Detailed chemical structures of stoichiometric and rich premixed laminar flames of methyl pentanoate and methyl hexanoate were investigated over a flat burner at 20 Torr and for methyl pentanoate at 1 atm. Molecular beam mass spectrometry was used with tunable synchrotron vacuum ultraviolet (VUV) photoionization for low pressure flames of both methyl pentanoate and methyl hexanoate, and soft electron-impact ionization was used for atmospheric pressure flames of methyl pentanoate. Mole fraction profiles of stable and intermediate species, as well as temperature profiles, were measured in the flames. A detailed chemical kinetic high temperature reaction mechanism for small alkyl ester oxidation was extended to include combustion of methyl pentanoate and methyl hexanoate, and the resulting model was used to compare computed values with experimentally measured values. Reaction pathways for both fuels were identified, with good agreement between measured and computed species profiles. Implications of these results for future studies of larger alkyl ester fuels are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.