Abstract

A general and enantioselective synthesis of 2-substituted 2-phenylpyrrolidines and -piperidines, an important class of pharmaceutically relevant compounds that contain a quaternary stereocenter, has been developed. The approach involves lithiation-substitution of enantioenriched N-Boc-2-phenylpyrrolidine or -piperidine (prepared by asymmetric Negishi arylation or catalytic asymmetric reduction, respectively). The combined use of synthetic experiments and in situ IR spectroscopic monitoring allowed optimum lithiation conditions to be identified: n-BuLi in THF at -50 °C for 5-30 min. Monitoring of the lithiation using in situ IR spectroscopy indicated that the rotation of the tert-butoxycarbonyl (Boc) group is slower in a 2-lithiated pyrrolidine than a 2-lithiated piperidine; low yields for the lithiation-substitution of N-Boc-2-phenylpyrrolidine at -78 °C can be ascribed to this slow rotation. For N-Boc-2-phenylpyrrolidine and -piperidine, the barriers to rotation of the Boc group were determined using density functional theory calculations and variable-temperature (1)H NMR spectroscopy. For the pyrrolidine, the half-life (t(1/2)) for rotation of the Boc group was found to be ∼10 h at -78 °C and ∼3.5 min at -50 °C. In contrast, for the piperidine, t(1/2) was determined to be ∼4 s at -78 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.