Abstract

Biped locomotion has excellent environment adaptability due to natural selection and evolution over hundreds of millions years. However, the biped walking stability mechanism is still not clear. In this paper, an experimental analysis of walking stability in human walking is carried out by using a motion capture system. A new stability analysis method is proposed based on Zero Moment Point (ZMP) and Sliding Time Window (STW). The influences of ground friction coefficient, ground slope angle and contact area of support polygon on human walking stability are investigated. The experiment is carried out with 12 healthy subjects, and 53 passive reflective markers are pasted to each subject to obtain moving trajectory and to calculate lower limb joint variation during walking. Experimental results show that ground friction coefficient, ground slope angle and contact area have significant effects on the stride length, step height, gait cycle and lower limb joint angles. When walking with small stability margin, subjects modulate gait to improve the stability, such as shortening stride length, reducing step height, and increasing the gait cycle. These results provide insights into the stability mechanism of human walking, which is beneficial for locomotion control of biped robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call