Abstract

Recently Automatic Speech Recognition (ASR) has been successfully integrated in many commercial applications. These applications are performing significantly well in relatively controlled acoustical environments. However, the performance of an Automatic Speech Recognition system developed for non-tonal languages degrades considerably when tested for tonal languages. One of the main reason for this performance degradation is the non-consideration of tone related information in the feature set of the ASR systems developed for non-tonal languages. In this paper we have investigated the performance of commonly used feature for tonal speech recognition. A model has been proposed for extracting features for tonal speech recognition. A statistical analysis has been done to evaluate the performance of proposed feature set with reference to the Apatani language of Arunachal Pradesh of North-East India, which is a tonal language of Tibeto-Burman group of languages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.