Abstract
This paper describes the use of the Boyer-Moore theorem prover in mechanically generating a proof of Wilson's theorem: for any prime p, (p-1)! and p-1 are congruent modulo p. The input to the theorem prover consists of a sequence of three function definitions and forty-two propositions to be proved. The proofs generated by the system are based on a library of lemmas relating to list manipulation and number theory, including Fermat's theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.