Abstract

Stroke affects approximately 17 million individuals worldwide each year and is a leading cause of long-term disability. Robotic therapy has shown promise in helping stroke patients regain lost motor functions. One potential avenue for increasing the understanding of how motor recovery occurs is to study brain activation during the movements that are targeted by therapy in healthy individuals. Functional Near-Infrared Spectroscopy (fNIRS) has emerged as a promising neuroimaging technique for examining neural underpinnings of motor function. This study aimed to investigate fNIRS neural correlates of complex lower limb movements in healthy subjects. Participants were asked to perform cycles of rest and movement for 6 min using a robotic device for motor rehabilitation. The task required coordinated knee and ankle joint movements to point to targets displayed on a computer screen. Two experimental conditions with different levels of movement assistance provided by the robot were explored. The results showed that the fNIRS protocol effectively detected brain regions associated with motor control during the task. Notably, all subjects exhibited greater activation in the contralateral premotor area during the no-assistance condition compared to the assisted condition. In conclusion, fNIRS appears to be a valuable approach for detecting changes in oxyhemoglobin concentration associated with multi-joint pointing movements of the lower limb. This research might contribute to the understanding of stroke motor recovery mechanisms and might pave the way for improved rehabilitation treatments for stroke patients. However, further research is needed to fully elucidate the potential of fNIRS in studying motor function and its applications in clinical settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.