Abstract

To control well the surface fluctuation of liquid metal in a slab mold, a new type of combined permanent magnets braking system, namely a permanent magnet flow control mold (PMFC-Mold) is proposed by our research group, of which its main feature is that the device can control the flow of molten steel in the mold without additional energy. To observe the fluctuation state of the alloy with the PMFC-Mold, instantaneous surface fluctuations were recorded by a laser level meter and camera. To study the effect of various casting speeds and permanent magnet placement on surface fluctuations, the three measurement points, which were 7, 18, and 36 mm away from the narrow surface of the mold, were selected to record the trend of level fluctuation. Three types of permanent magnet placement were designed by setting the differences between the height center of the permanent magnet and the free surface in the slab mold, which were H1 = 0 mm, H2 = −25 mm, and H3 = −75 mm. The experimental results indicated that with the acceleration of the casting speed, the average height and standard deviation of surface fluctuation at the measurement point increased, but the surface fluctuation pattern remained. When the permanent magnets were arranged at H1 = 0 mm and H2 = −25 mm, the position of the magnetic field was reasonable and the surface fluctuation could be effectively suppressed. In contrast, when the permanent magnets were arranged at H3 = −75 mm, the level fluctuation was intensified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call