Abstract

Numerous surrogate-assisted expensive multi-objective optimization algorithms were proposed to deal with expensive multi-objective optimization problems in the past few years. The accuracy of the surrogate models degrades as the number of decision variables increases. In this paper, we propose a surrogate-assisted expensive multi-objective optimization algorithm based on decision space compression. Several surrogate models are built in the lower dimensional compressed space. The promising points are generated and selected in the lower compressed decision space and decoded to the original decision space for evaluation. Experimental studies show that the proposed algorithm achieves a good performance in handling expensive multi-objective optimization problems with high-dimensional decision space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call