Abstract

We consider polynomials that are orthogonal over an analytic Jordan curve L with respect to a positive analytic weight, and show that each such polynomial of sufficiently large degree can be expanded in a series of certain integral transforms that converges uniformly in the whole complex plane. This expansion yields, in particular and simultaneously, Szego's classical strong asymptotic formula and a new integral representation for the polynomials inside L. We further exploit such a representation to derive finer asymptotic results for weights having finitely many singularities (all of algebraic type) on a thin neighborhood of the orthogonality curve. Our results are a generalization of those previously obtained in [7] for the case of L being the unit circle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.