Abstract
The increasing problem of drug resistance and emerging pathogens is an urgent global health problem that necessitates the development and expansion of tools for studying fungal drug resistance and pathogenesis. Prior studies in Candida glabrata, Candida auris, and Candida albicans have been mainly limited to the use of NatMX/SAT1 and HphMX/CaHyg for genetic manipulation in prototrophic strains and clinical isolates. In this study, we demonstrated that NatMX/SAT1, HphMX, KanMX, and/or BleMX drug resistance cassettes when coupled with a CRISPR-ribonucleoprotein (RNP)-based system can be efficiently utilized for deleting or modifying genes in the ergosterol pathway of C. glabrata, C. auris, and C. albicans. Moreover, the utility of these tools has provided new insights into ERG genes and their relationship to azole resistance in Candida. Overall, we have expanded the toolkit for Candida pathogens to increase the versatility of genetically modifying complex pathways involved in drug resistance and pathogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.