Abstract
We model the formation and evolution of galaxy clusters in the framework of an extended dark matter halo merger-tree algorithm that includes baryons and incorporates basic physical considerations. Our modified treatment is employed to calculate the probability density functions of the halo concentration parameter, intracluster gas temperature, and the integrated Comptonization parameter for different cluster masses and observation redshifts. Scaling relations between cluster mass and these observables are deduced that are somewhat different than previous results. Modeling uncertainties in the predicted probability density functions are estimated. Our treatment and the insight gained from the results presented in this paper can simplify the comparison of theoretical predictions with results from ongoing and future cluster surveys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.