Abstract
In a previous paper, B.-Y. Chen defined a Riemannian invariant δ by subtracting from the scalar curvature at every point of a Riemannian manifold the smallest sectional curvature at that point, and proved, for a submanifold of a real space form, a sharp inequality between δ and the mean curvature function. In this paper, we extend this inequality to totally real submanifolds of a complex space form. As a consequence, we obtain a metric obstruction for a Riemannian manifold Mn to admit a minimal totally real (i.e. Lagrangian) immersion into a complex space form of complex dimension n. Next we investigate three-dimensional submanifolds of the complex projective space ℂP3 which realise the equality in the inequality mentioned above. In particular, we construct and characterise a totally real minimal immersion of S3 in ℂP3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.