Abstract

Sandwiched between the Dharwar Craton in the north and the Neoarchean–Proterozoic crustal blocks to the south, the Coorg Block in southern India is composed dominantly of a suite of arc magmatic rocks including charnockites, TTG (tonalite–trondhjemite–granodiorite)-related granitoid suite and felsic volcanic tuffs together with minor accreted oceanic remnants along the periphery of the block. Coeval mafic and felsic magmatism with magma mixing and mingling in an arc setting is well represented in the block. Here we present the petrology, geochemistry, zircon U–Pb geochronology and Lu–Hf isotopes of all the major lithologies from this block. Computation of metamorphic P–T conditions from mineral chemical data shows consistent granulite-facies P–T conditions of 820–870°C and up to 6kbar. Our geochemical data from major, trace and REE on representative samples of the dominant rock types from the Coorg Block corroborate an arc-related signature, with magma generation in a convergent margin setting. The zircon data yield weighted mean 207Pb/206Pb ages of 3153.4±9 to 3184.0±5.5Ma for syenogranites, 3170.3±6.8Ma for biotite granite, 3275±5.1Ma for trondhjemite, 3133±12 to 3163.8 ±6.9Ma for charnockites, 3156±10 to 3158.3±8.2 for mafic enclaves, 3161±16Ma for diorite and 3173±16Ma for felsic volcanic tuff. An upper intercept age of 3363±59Ma and a lower intercept age of 2896±130Ma on zircons from a charnockite, as well as an evaluation of the Th/U values of the zircon domains against respective 207Pb/206Pb ages suggest that the Mesoarchean magma emplacement which probably ranged from >3.3 to 3.1Ga was immediately followed by metamorphism at ca. 3.0 to 2.9Ga. The ages of magmatic zircons from the charnockites and their mafic granulite enclaves, as well as those from the volcanic tuff and biotite granite, are all remarkably consistent and concordant marking ca. 3.1Ga as the peak of subduction-related crust building in this block, within the tectonic milieu of an active convergent margin. The majority of zircons from the Coorg rocks show Hf isotope features typical of crystallization from magmas derived from juvenile sources. Their Hf crustal model ages suggest that the crust building might have also involved partial recycling of basement rocks as old as ca. 3.8Ga. The crustal blocks in the Southern Granulite Terrane in India preserve strong imprints of major tectonothermal events at 2.5Ga, 2.0Ga, 0.8Ga and 0.55Ga associated with various subduction–accretion–collision or rifting events. However, the Coorg Block is exceptional with our data suggesting that none of the above events affected this block. Importantly, there is also no record in the Coorg Block for the 2.5Ga pervasive regional metamorphism that affected all the other blocks in this region. The geochronological data raise the intriguing possibility that this block is an exotic entity within the dominantly Neoarchean collage in the northern domain of the Southern Granulite Terrane of India. The Mesoarchean arc-related rocks in the Coorg Block suggest that the magma factories and their tectonic architecture in the Early Earth were not markedly different from those associated with the modern-style plate tectonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.