Abstract

Hand motor impairment has seriously affected the daily life of the elderly. We developed an electromyography (EMG) exosuit system with bidirectional hand support for bilateral coordination assistance based on a dynamic gesture recognition model using graph convolutional network (GCN) and long short-term memory network (LSTM). The system included a hardware subsystem and a software subsystem. The hardware subsystem included an exosuit jacket, a backpack module, an EMG recognition module, and a bidirectional support glove. The software subsystem based on the dynamic gesture recognition model was designed to identify dynamic and static gestures by extracting the spatio-temporal features of the patient's EMG signals and to control glove movement. The offline training experiment built the gesture recognition models for each subject and evaluated the feasibility of the recognition model; the online control experiments verified the effectiveness of the exosuit system. The experimental results showed that the proposed model achieve a gesture recognition rate of 96.42% ± 3.26 %, which is higher than the other three traditional recognition models. All subjects successfully completed two daily tasks within a short time and the success rate of bilateral coordination assistance are 88.75% and 86.88%. The exosuit system can effectively help patients by bidirectional hand support strategy for bilateral coordination assistance in daily tasks, and the proposed method can be applied to various limb assistance scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.