Abstract

Research in robotic gait rehabilitation still faces many challenges regarding ankle assistance, body weight support and human-robot interaction. This paper reports on the development, focusing on these challenges, of a gait rehabilitation exoskeleton powered by pleated pneumatic artificial muscles. The first prototype is intended as a platform for the evaluation of design and control concepts. The mechanical design procedure is explained with the emphasis on optimization. A proxy-based sliding mode control approach is proposed and evaluated by means of simulation. Simulation results indicate good tracking performance and safe system behavior, encouraging experimental validation on the prototype.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.