Abstract

A peculiar bacterial growth was very often noticed in leaf-initiated tissue cultures of Sansevieriatrifasciata, a succulent belonging to the Asparagaceae family. The isolate left trails of some highly viscous material on the walls of the suspension vessels or developed a thick overlay on semisolid media without adversities in plant growth. FTIR identified this substance to be an extracellular polysaccharide. Various morphological, biochemical tests, and molecular analyses using 16S rRNA, atpD, and recA genes characterized this isolate JAS1 as a novel strain of Agrobacteriumpusense. Its mucoidal growth over Murashige and Skoog media yielded enormous exopolysaccharide (7252 mg l−1), while in nutrient agar it only developed fast-growing swarms. As a qualifying plant growth-promoting bacteria, it produces significant indole-3-acetic acid (86.95 mg l−1), gibberellic acid (172.98 mg l−1), ammonia (42.66 µmol ml−1). Besides, it produces siderophores, 1-aminocyclopropane-1-carboxylicaciddeaminase, fixes nitrogen, forms biofilms, and productively solubilizes soil inorganic phosphates, and zinc. Under various treatments with JAS1, wheat and chickpea resulted in significantly enhanced shoot and root growth parameters. PGP effects of JAS1 positively enhanced plants’ physiological growth parameters reflecting significant increments in overall chlorophyll, carotenoids, proline, phenols, flavonoids, and sugar contents. In addition, the isolated strain maintained both plant and soil health under an intermittent soil drying regime, probably by both its PGP and EPS production attributes, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.