Abstract

An exhaled breath sampler based on condensational growth and cyclone centrifugation (BSCC) was developed and evaluated. The BSCC increases the size of exhaled breath aerosols through condensational growth and then collects them as liquid sample via centrifugation. This enables rapid sample collection and eliminates certain pre-treatment steps for pathogenic microorganism analysis. Laboratory-generated aerosols were mixed with saturated water vapor to simulate exhaled breath, and the collection efficiency and the virus infectivity conservation efficiency of the BSCC were evaluated. The collection efficiency of the BSCC was approximately 66.7% for 100 nm aerosols and increased to nearly 100% for 3 µm aerosols. Besides, the BSCC maintained approximately 93.5% infectivity of atomized model virus aerosol (Pseudomonas bacteriophage Phi6). When collecting exhaled breath samples from nine volunteers, the average collection rate was 248.7 µL min–1. The BSCC achieved superior overall performance (i.e., 60% high collection efficiency and 40% higher infectivity conservation efficiency) compared with RTube, a commercial used exhaled breath sampler, indicating its potential for diagnosis of respiratory infection and measurements of exhaled viral aerosols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.