Abstract
The present discourse develops an enlarged exploration of the matrix formulation of finite rotations in space initiated in [1]. It is shown how a consistent but subtle matrix calculus inevitably leads to a number of elegant expressions for the transformation or rotation matrix T appertaining to a rotation about an arbitrary axis. Also analysed is the case of multiple rotations about fixed or follower axes. Particular attention is paid to an explicit derivation of a single compound rotation vector equivalent to two consecutive arbitrary rotations. This theme is discussed in some detail for a number of cases. Semitangential rotations—for which commutativity holds—first proposed in [2, 3]are also considered. Furthermore, an elementary geometrical analysis of large rotations is also given. Finally, we deduce in an appendix, using a judicious reformulation of quarternions, the compound pseudovector representing the combined effect of n rotations. In the author's opinion the present approach appears preferable to a pure vectorial scheme—and even more so to an indicial formulation— and is computationally more convenient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.