Abstract

N-hydroxyphthalimide (NHPI), which is best known as an organocatalyst for efficient C-H activation, has been found to be oxidized by quinoid compounds to its corresponding catalytically active nitroxide-radical. Here, we found that NHPI can be isomerized into isatoic anhydride by an unusually facile two-step method using tetrachloro-1,4-benzoquinone (TCBQ, p-chloranil), accompanied by a two-step hydrolytic dechlorination of highly toxic TCBQ into the much less toxic dihydroxylation product, 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (chloranilic acid). Interestingly, through the complementary application of oxygen-18 isotope-labeling, HPLC combined with electrospray ionization quadrupole time-of-flight and high resolution Fourier transform ion cyclotron resonance mass spectrometric studies, we determined that water was the source and origin of oxygen for isatoic anhydride. Based on these data, we proposed that nucleophilic attack with a subsequent water-assisted Lossen rearrangement coupled with rapid intramolecular addition and cyclization in two consecutive steps was responsible for this unusual structural isomerization of NHPI and concurrent hydroxylation/detoxication of TCBQ. This is the first report of an exceptionally facile double-isomerization of NHPI via an unprecedented water-assisted double-Lossen rearrangement under normal physiological conditions. Our findings may have broad implications for future research on hydroxamic acids and polyhalogenated quinoid carcinogens, two important classes of compounds of major chemical and biological interest.

Highlights

  • Considerable interest in hydroxamic acids has been generated recently due to their ability to inactivate various enzymes, such as lipoxygenase and metalloprotease, causing transition metal-mediated oxidative damage

  • Through complementary applications of oxygen-18 isotope-labeling, high-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight mass spectrometry (HPLC-ESI-Q-TOF-MS) and high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) studies, we found that TCBQ induced an unusually facile two-step isomerization of NHPI to isatoic anhydride (IA) via a water-assisted double Lossen-type rearrangement coupled with rapid intramolecular nucleophilic addition under normal physiological conditions

  • We first attempted to determine whether TCBQ oxidizes NHPI to generate its corresponding nitroxide radical phthalimide N-oxyl radical (PINO) under normal physiological conditions, as reported previously[15], or if it reacts with NHPI to produce N- and O-centered radicals via nucleophilic substitution coupled by homolytic decomposition[16]

Read more

Summary

Double Lossen Rearrangement

Feng Li1, Chun-Hua Huang[1], Lin-Na Xie[1], Na Qu1, Jie Shao[1], Bo Shao1 & Ben-Zhan Zhu[1,2]. Through the complementary application of oxygen-18 isotope-labeling, HPLC combined with electrospray ionization quadrupole time-of-flight and high resolution Fourier transform ion cyclotron resonance mass spectrometric studies, we determined that water was the source and origin of oxygen for isatoic anhydride Based on these data, we proposed that nucleophilic attack with a subsequent water-assisted Lossen rearrangement coupled with rapid intramolecular addition and cyclization in two consecutive steps was responsible for this unusual structural isomerization of NHPI and concurrent hydroxylation/ detoxication of TCBQ. Through complementary applications of oxygen-18 isotope-labeling, high-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight mass spectrometry (HPLC-ESI-Q-TOF-MS) and high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) studies, we found that TCBQ induced an unusually facile two-step isomerization of NHPI to isatoic anhydride (IA) via a water-assisted double Lossen-type rearrangement coupled with rapid intramolecular nucleophilic addition under normal physiological conditions

Results and Discussion
Intramolecular Addition
Product II
Neucleophilic Substitution
Methods
Author Contributions
Additional Information
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.