Abstract

Under a general hypothesis an expanding map T of a Riemannian manifold M is known to preserve a measure equivalent to the Liouville measure on that manifold. As a consequence of this and Birkhoff’s pointwise ergodic theorem, the orbits of almost all points on the manifold are asymptotically distributed with regard to this Liouville measure. Let T be Lipschitz of class τ for some τ in (0,1], let Ω(x) denote the forward orbit closure of x and for a positive real number δ and let E(x0, δ) denote the set of points x in M such that the distance from x0 to Ω is at least δ. Let dim A denote the Hausdorff dimension of the set A. In this paper we prove a result which implies that there is a constant C(T) > 0 such that \(\dim E(x_0,\delta) \ge \dim M - \frac{C(T)}{\vert\!\log \delta \vert} \) if τ = 1 and \(\dim E(x_0,\delta) \ge \dim M - \frac{C(T)}{\log \vert \log \delta \vert}\) if τ < 1. This gives a quantitative converse to the above asymptotic distribution phenomenon. The result we prove is of sufficient generality that a similar result for expanding hyperbolic rational maps of degree not less than two follows as a special case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.