Abstract

The extremal coefficient function (ECF) of a max-stable process $X$ on some index set $T$ assigns to each finite subset $A\subset T$ the effective number of independent random variables among the collection $\{X_{t}\}_{t\in A}$. We introduce the class of Tawn–Molchanov processes that is in a 1:1 correspondence with the class of ECFs, thus also proving a complete characterization of the ECF in terms of negative definiteness. The corresponding Tawn–Molchanov process turns out to be exceptional among all max-stable processes sharing the same ECF in that its dependency set is maximal w.r.t. inclusion. This entails sharp lower bounds for the finite dimensional distributions of arbitrary max-stable processes in terms of its ECF. A spectral representation of the Tawn–Molchanov process and stochastic continuity are discussed. We also show how to build new valid ECFs from given ECFs by means of Bernstein functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.