Abstract
Incubation of suspension cultures of Chinese hamster ovary (CHO) cells with 1-nitropyrene for as long as 2.5 h failed to induce mutations at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus, while incubation with 1-nitrosopyrene, a reduced derivative of 1-nitropyrene, resulted in a strong mutagenic response. Examination of the metabolites produced during these incubations indicated that 1-nitrosopyrene was rapidly reduced to 1-aminopyrene while 1-nitropyrene was not detectably metabolized. Both compounds produced a single major DNA adduct. N-(deoxyguanosin-8-yl)-1-aminopyrene, in the CHO cells and a strong linear relationship was found between mutation induction and the extent of DNA binding. The low level of adducts produced by 1-nitropyrene was consistent with the weak mutagenic response produced by this compound. These results indicated that both 1-nitropyrene and 1-nitrosopyrene are reduced to a reactive electrophile, presumably N-hydroxy-1-aminopyrene, which produces potentially mutagenic DNA damage in CHO cells. Comparison of the relationship between N-(deoxyguanosin-8-yl)-1-aminopyrene formation and mutation induction in CHO cells with the levels of 1-nitropyrene-induced DNA damage associated wit positive responses in other assays of genetic toxicity and with the number of mutations associated with the DNA adducts produced by other agents in CHO cell suggests that the CHO/HGPRT assay may be relatively insensitiveee to 1-nitropyrene-induced DNA damage. The poor capability of CHO cells in reducing 1-nitropyrene and the relative insensitivity of the assay to the DNA damage produced by this compound may contribute to the weak mutagenci response of 1-nitropyrene in CHO cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.