Abstract

AbstractSix patents were secured by E. H. Lanier from 1930 to 1933 for aeroplane designs that were intended to be exceptionally stable. A feature of five of these was a flow-induced “vacuum chamber” which was thought to provide superior stability and increased lift compared to typical wing designs. Initially, this chamber was in the fuselage, but later designs placed it in the wing by replacing a section of the upper skin of the wing with a series of angled slats. We report upon an investigation of the Lanier wing design using inviscid aerodynamic theory and viscous numerical simulations. This took place at the 2005 Australia–New Zealand Mathematics-in-Industry Study Group. The evidence from this investigation does not support the claims but, rather, suggests that any improvement in lift and/or stability seen in the few prototypes that were built was, most probably, due to thicker airfoils than were typical at the time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call