Abstract
Although striations are often used in evaluating fatigue crack growth in engineering materials, they have not been used in studying the mechanics of fracture in hard tissues. The primary objective of this study was to evaluate the striations resulting from fatigue crack growth in the dentin of human teeth. Compact tension (CT) specimens obtained from the coronal dentin of molars from young (17 < or = age < or = 37 years) and senior (age > or = 50 years) patients were subjected to cyclic Mode I loads. Striations evident on the fracture surfaces were examined using a scanning electron microscope (SEM) and contact profilometer. Fatigue crack growth striations that developed in vivo were also examined on fracture surfaces of restored molars. A power spectrum analysis of surface profiles from the CT specimens showed that the striation spacing ranged from 50 to 170 microm. The average spacing in the dentin of seniors (130 +/- 23 microm) was significantly larger (p < 0.001) than that in young dentin (88 +/- 13 microm). Fatigue striations in the restored teeth exhibited features that were consistent with those that developed in vitro and a spacing ranging from 59 to 95 microm. Unlike metals, the striations in dentin developed after a period of cyclic loading that ranged from 1 x 10(3) to 1 x 10(5) cycles. A quantitative evaluation of the striation spacing using the Bates-Clark equation suggested that cyclic crack growth within the restored teeth occurred at a stress intensity range near 0.7 MPa x m(0.5), and a stress range of approximately 12 MPa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomedical Materials Research Part B: Applied Biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.