Abstract

The idea that a single subgrain is sufficient to produce a single recrystallised grain is the simplest explanation for the recrystallisation process. Likewise, a single Goss oriented grain arising from the primary recrystallisation process is the simplest unit which can give rise to a secondary Goss oriented grain. More complicated cluster models, for example subgrain coalescence is also considered feasible for primary recrystallisation, clusters of Goss oriented grains might be another mechanism for forming Goss oriented secondary grains. This paper examines the cluster theory using material which is produced by the ARMCO process which requires two stages of rolling. In order to achieve this aim it is necessary to destroy the connectivity between individual Goss oriented grains by using thin foils derived from sheet which gives a strong Goss texture on conventional annealing. The foils were sectioned from the subsurface which had a strong η fibre after primary recrystallisation, and ranged in thickness from 18μm (the average grain size after primary recrystallisation) up to 80μm, which is the approximate thickness of the η textured layer. The central layer, which had the classical {111}<hkl> primary recrystallised texture, was similarly processed, but this did not produce secondary recrystallisation. The experiment followed the secondary recrystallisation process in the same area using sequential annealing in a vacuum furnace by a combination of EBSD and Channelling contrast microscopy. The data does not support the high energy boundary hypothesis nor the CSL explanation. But it is clear that connectivity is important, because when this is destroyed by the thin foil two dimensional morphology, as it is in the thinnest foil, secondary recrystallisation does not occur.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call