Abstract

An exact zero-skew clock routing algorithm using the Elmore delay model is presented. The results have been verified with accurate waveform simulation. The authors first review a linear time delay computation method. A recursive bottom-up algorithm is then proposed for interconnecting two zero-skewed subtrees to a new tree with zero skew. The algorithm can be applied to single-staged clock trees, multistaged clock trees, and multi-chip system clock trees. The approach is ideal for hierarchical methods of constructing large systems. All subsystems can be constructed in parallel and independently, then interconnected with exact zero skew. Extensions to the routing of optimum nonzero-skew clock trees (for cycle stealing) and multiphased clock trees are also discussed. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.