Abstract

A new procedure for testing the H 0: μ1 = ··· = μ k against the alternative H u :μ1 ≥ ··· ≥μ r ≤ ··· ≤ μ k with at least one strict inequality, where μ i is the location parameter of the ith two-parameter exponential distribution, i = 1,…, k, is proposed. Exact critical constants are computed using a recursive integration algorithm. Tables containing these critical constants are provided to facilitate the implementation of the proposed test procedure. Simultaneous confidence intervals for certain contrasts of the location parameters are derived by inverting the proposed test statistic. In comparison to existing tests, it is shown, by a simulation study, that the new test statistic is more powerful in detecting U-shaped alternatives when the samples are derived from exponential distributions. As an extension, the use of the critical constants for comparing Pareto distribution parameters is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.