Abstract

The minimum cost dominating tree problem is a recently introduced NP-hard problem, which consists of finding a tree of minimal cost in a given graph, such that for every node of the graph, the node or one of its neighbours is in the tree. We present an exact solution framework combining a primal–dual heuristic with a branch-and-cut approach based on a transformation of the problem into a Steiner arborescence problem with an additional constraint. The effectiveness of our approach is evaluated on testbeds proposed in literature containing instances with up to 500 nodes. Our framework manages to solve all but four instances from literature to proven optimality within 3 h (most of them in a few seconds). We provide optimal solution values for 69 instances from literature for which the optimal solution was previously unknown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.