Abstract

The buckling of heated functionally graded material (FGM) annular plates on an elastic foundation is studied analytically. A conventional Pasternak-type elastic foundation is assumed to be in contact with plate during deformation, which acts in both compression and tension. The equilibrium equations of an annular-shaped plate are obtained based on the classical plate theory. Each thermo-mechanical property of the plate is assumed to be graded across the thickness direction of plate based on the power law form, while Poisson’s ratio is kept constant. Among all combinations of free, simply-supported, and clamped boundary conditions, existence of bifurcation buckling for various edge supports is examined and stability equations are obtained by means of the adjacent equilibrium criterion. An exact analytical solution is presented to calculate the thermal buckling load by obtaining the eigenvalues of the stability equation. Three types of thermal loading, namely; uniform temperature rise, transversely linear temperature distribution and heat conduction across the thickness type are studied. Effects of thickness to outer radii, inner to outer radii, power law index, elastic foundation coefficient, and thermal loading type on critical buckling temperature of FG plates are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.