Abstract

This paper proposes an exact optimization algorithm based on a branch and bound method for linear decomposition of index generation functions. The proposed algorithm efficiently finds the optimum linear decomposition of an index generation function by pruning non-optimum solutions using effective branch and bound strategies. The branch strategy is based on our previous heuristic [2] using a balanced decision tree, and the bound is based on a lower bound on the number of variables needed for linear decomposition. Experimental results using a benchmark index generation function show its optimum linear decompositions and effectiveness of the strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.