Abstract

AbstractIn the literature two common macroscopic evacuation planning approaches exist: The dynamic network flow approach and the Cell–Transmission–Based approach. Both approaches have advantages and disadvantages. Many efficient solution approaches for the dynamic network flow approach exist so that realistic problem instances can be considered. However, the consideration of (more) realistic aspects (eg, density dependent travel times) results in non‐linear model formulations. The Cell‐Transmission‐Based approach on the other hand considers realistic traffic phenomena like shock waves and traffic congestion, but this approach leads to long computational times for realistic problem instances. In this article, we combine the advantages of both approaches: We consider a Cell‐Transmission‐Based Evacuation Planning Model (CTEPM) and present a network flow formulation that is equivalent to the cell‐based model. Thus, the computational costs of the CTEPM are enormously reduced due to the reformulation and the detailed representation of the traffic flow dynamics is maintained. We investigate the impacts of various evacuation scenario parameters on the evacuation performance and on the computational times in a computational study including 90 realistic instances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.