Abstract

When planning new railway infrastructures in order to enhance the network to meet future demand, the capacity departments of railway operators typically have to face a time consuming trial-and-error process. The process involves the computation of a new timetable which satisfies the demand and is feasible w.r.t. the enhanced network, and is typically carried out by expert personnel with little or no assistance by computer tools. The quality of the results is thus very dependent on the skills of the individual planner. In this paper, we describe an exact approach to produce train timetables in short computation time. The approach extends the models and decomposition algorithms previously developed for train dispatching, a deeply related operational problem. The problem is solved at the microscopic level and the final timetable, even if in general non-cyclic, can incorporate cyclicity constraints for any subset of trains. Results are presented for a feasibility study in the Oslo area commissioned by the capacity planning department at Jernbaneverket (Norway׳s infrastructure manager).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.