Abstract

We study in this paper the problem of jumper insertion on general routing (Steiner/spanning) trees with obstacles for antenna avoidance/fixing at the routing and/or postlayout stages. We formulate the jumper insertion for antenna avoidance/fixing as a tree-cutting problem and present the first optimal algorithm for the general tree-cutting problem. We show that the tree-cutting problem exhibits the properties of optimal substructures and greedy choices. With these properties, we present an O((V+D)lgD)-time optimal jumper-insertion algorithm that uses the least number of jumpers to avoid/fix the antenna violations on a Steiner/spanning tree with V vertices and D obstacles. Experimental results show the superior effectiveness and efficiency of our algorithm

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.