Abstract

Abstract This paper describes an exact ϵ -constraint method for bi-objective combinatorial optimization problems with integer objective values. This method tackles multi-objective optimization problems by solving a series of single objective subproblems, where all but one objectives are transformed into constraints. We show in this paper that the Pareto front of bi-objective problems can be efficiently generated with the ϵ -constraint method. Furthermore, we describe heuristics based on information gathered from previous subproblems that significantly speed up the method. This approach is used to find the exact Pareto front of the Traveling Salesman Problem with Profits, a variant of the Traveling Salesman Problem in which a profit or prize value is associated with each vertex. The goal here is to visit a subset of vertices while addressing two conflicting objectives: maximize the collected prize and minimize the travel costs. We report the first exact results for this problem on instances derived from classical Vehicle Routing and Traveling Salesman Problem instances with up to 150 vertices. Results on approximations of the Pareto front obtained from a variant of our exact algorithm are also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.