Abstract
We consider the class, say ℳn,sym, of martingales Mn = X1 + ⋯ + Xn with conditionally symmetric bounded differences Xk such that |Xk | ≤ 1. We find explicitly a solution, say Dn(x), of the variational problem Dn(x) ≝ sup Mn ∈ℳn,sym ℙ {Mn ≥ x}. We show that this problem is equivalent to one when you want to find out the symmetric random walk with bounded length of steps which maximizes the probability to visit an interval [x;∞]. The function x \mapsto Dn(x) allows a simple description and is closely related to the binomial tail probabilities. We can interpret the result as a final and optimal upper bound ℙ{Mn ≥ x} ≤ Dn(x), x ∈ ℝ, for the tail probability ℙ {Mn ≥ x}.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.