Abstract

We introduce a new simulation algorithm for computing the Hessians of Bermudan swaptions and cancelable swaps. The resulting pathwise estimates are unbiased and accurate. Given the exercise strategy, the pathwise angularities are removed by a sequence of measure changes. The change of measure at each exercise time is chosen to be optimal in terms of minimizing the variance of the likelihood ratio terms. Numerical results for the Hessian of cancelable swaps are presented to demonstrate the speed and efficacy of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.