Abstract

In this study, an exact analytical solution for the heat conduction problem in a truncated conical shell is presented. The cone is made of functionally graded materials and it is considered that the material properties vary according to power-law functions. The general thermal boundary conditions are applied to cover a wide variety of actual applications. The results are successfully validated. Two examples, which are tried to mimic practical conditions, are studied using the derived solution, and a parametric study is done to shed light on the problem. The outcomes of this research provide useful information for understanding the nature of heat transfer behavior in the specific geometry of a cone. Regarding the specific applications of conical shells, the results can be used in the prefabrication process of these shells and tailoring the design parameter of functionally graded materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.