Abstract

Based on third-order shear deformation plate theory of Reddy, the authors aim to provide an exact analytical solution for free vibration analysis of thick circular/annular plates, both upper and lower surfaces of which are in contact with a piezoelectric layer. Natural frequencies are determined by the solution of the coupled electromechanical governing equations for a combination of free, soft simply supported, hard simply supported and clamped boundary conditions at the inner and outer edges of the plate. The electrodes on each piezoelectric layer are assumed to be short-circuited. The Maxwell electrostatics equation is satisfied by adopting a half-sine distribution of the electric potential in the transverse direction of the piezoelectric layers. A comparison of the present exact natural frequencies for piezoelectric coupled circular/annular plates with different boundary conditions is made with previously published results obtained by the Mindlin plate theory and 3-D modified finite element method . The effects of plate parameters such as host thickness to radius ratios, inner to outer radius ratios and piezoelectric to host thickness ratios on the natural frequencies of laminated circular/annular plates are investigated for different combinations of boundary conditions. Results obtained by the present exact closed-form solutions can be served as benchmark data for investigators to validate their numerical and analytical methods in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call